Estimator Full Information Maximum Likelihood


Metoda Full Information Maximum Likelihood (FIML)  mendapatkan estimasi suatu parameter dengan cara memaksimalkan fungsi likelihood untuk semua system parameters.  Hasil estimator dengan FIML adalah consitent dan asymptotical efficient (Intriligator, Bodkin, Hsio, 1996). Untuk mendapatkan penaksir FIML, misalkan ada persamaan ke-h dalam suatu system yang mengandung gh variabel endogen dan kh variabel eksogen  dapat dinyatakan sebagai berikut:

eq11 (1)

dimana δh adalah koefisien yang akan diestimasi dalam persamaan sistem tersebut. Persamaan (1) diasumsikan semua persamaan adalah just idenfied atau overidenfied.

Baca lebih lanjut

Estimation Non Linier Model with Genetic Algoritma


Pada umumnya estimasi dalam Model Non Linier mengunakan metoda OLS (Ordinary Least Square) atau ML (Maximum Likelihood) dengan Algoritma Konvesional Gause-Newton; Newton-Rhapson; Marquardt-Levenberg; Berndt, Hall, Hall & Hausman atau Metoda Quadratic-Hill Climbing. Metoda Algoritma tersebut tidak akan menghasilkan global minimum/ maksimum. Dalam paper ini akan menjelaskan pendekatan baru yaitu Genetic Algoritma yang lebih menjamin global Maksimal/ minimal. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

Download bila Anda ingin mendapatkan paper lengkap : Genetic Algoritma.pdf

Silahkan “Comment” di bawah ini.

Bookmark and Share

Linier Model Estimation using Ordinary Least Square and Maximum Likelihood


Estimasi dalam Model Linier pada umumnya mengunakan metoda OLS (Ordinary Least Square) atau ML (Maximum Likelihood). Dalam Paper ini menjelaskan secara teoritis bagaimana metoda estimasi tersebut. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

Download bila Anda ingin mendapatkan paper lengkap: (1)cover.pdf; (2)daftar-isi.pdf; (3)isi.pdf

Bookmark and Share

NonLinier Estimation using OLS and Max Likelihood


Paper akan melaporkan hasil ekperimen model nonlinier
untuk menaksir fungsi produksi Cobb-Douglas dan CES dengan mengunakan
metoda Nonlinier Least Square dan Non-Linier Maksimum Likelihood. Metoda estimasi model non linier dengan pendekatan Algoritma Konvesional Gause-Newton; Newton-Rhapson; Marquardt-Levenberg; Berndt, Hall, Hall & Hausman atau Metoda Quadratic-Hill Climbing. Dalam paper ini akan menjelaskan pendekatan tersebut. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

File download klik di sini nonlinier.pdf dan lampiran.pdf.

Bookmark and Share

%d blogger menyukai ini: