Panel Unit Root Test


Dalam dekade terakhir ini, persoalan pengujian untuk unit root test untuk heterogenous panels telah menarik perhatian yang besar. Secara prinsip pengunaan panel data unit root test adalah dimaksudkan untuk meningkatkan power of the test dengan meningkatkan jumlah sample. Peningkatan jumlah sample yang besar dapat dilakukan dengan meningkatkan jumlah crosssectional data maupun jumlah time-series data. Persoalan yang muncul dalam panel data adalah persoalan perubahan struktur bila menggunakan data yang panjang atau terjadi heterogeneity bila menggunakan data crosssectional. Contoh yang terkenal untuk pengujian unit root namun untuk homogenous panel adalah Summer dan Heston (1991) dengan menggunakan panel data set mencakup berbagai industri yang berbeda, region, berbagai negara dengan jangka waktu yang panjang.

Pengujian unit root telah dikembangkan oleh Quah (1992,1994), Levin dan Lin (1993), untuk homogenous panels. Pengujian unit root tersebut, tidak dapat mengakomodasi heterogenitas antar kelompok, seperti pengaruh unik individu (individual special effects) dan pola yang berbeda dari residual serial correlations. Statistik Uji yang kemukakan oleh Quah, Levin dan Lin ini lebih dapat digunakan dengan untuk kondisi adanya efek spesifik individu maupun heterogeneity across groups dan memerlukan N/T -> 0 dan kedua N (cross section dimention) dan T (time series dimention) menuju tak hingga. Baca lebih lanjut

Estimation Non Linier Model with Genetic Algoritma


Pada umumnya estimasi dalam Model Non Linier mengunakan metoda OLS (Ordinary Least Square) atau ML (Maximum Likelihood) dengan Algoritma Konvesional Gause-Newton; Newton-Rhapson; Marquardt-Levenberg; Berndt, Hall, Hall & Hausman atau Metoda Quadratic-Hill Climbing. Metoda Algoritma tersebut tidak akan menghasilkan global minimum/ maksimum. Dalam paper ini akan menjelaskan pendekatan baru yaitu Genetic Algoritma yang lebih menjamin global Maksimal/ minimal. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

Download bila Anda ingin mendapatkan paper lengkap : Genetic Algoritma.pdf

Silahkan “Comment” di bawah ini.

Bookmark and Share

Linier Model Estimation using Ordinary Least Square and Maximum Likelihood


Estimasi dalam Model Linier pada umumnya mengunakan metoda OLS (Ordinary Least Square) atau ML (Maximum Likelihood). Dalam Paper ini menjelaskan secara teoritis bagaimana metoda estimasi tersebut. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

Download bila Anda ingin mendapatkan paper lengkap: (1)cover.pdf; (2)daftar-isi.pdf; (3)isi.pdf

Bookmark and Share

NonLinier Estimation using OLS and Max Likelihood


Paper akan melaporkan hasil ekperimen model nonlinier
untuk menaksir fungsi produksi Cobb-Douglas dan CES dengan mengunakan
metoda Nonlinier Least Square dan Non-Linier Maksimum Likelihood. Metoda estimasi model non linier dengan pendekatan Algoritma Konvesional Gause-Newton; Newton-Rhapson; Marquardt-Levenberg; Berndt, Hall, Hall & Hausman atau Metoda Quadratic-Hill Climbing. Dalam paper ini akan menjelaskan pendekatan tersebut. Simulasi Monte Carlo digunakan untuk menjamin Robusness hasil estimasi. Komputasi yang digunakan dengan menggunakan MATLAB.

File download klik di sini nonlinier.pdf dan lampiran.pdf.

Bookmark and Share

%d blogger menyukai ini: